

Shoubra faculty of Engineering

2nd year Mech. 2017/2018

Electronics Engineering

Lecture 1

Introduction to Electric Circuits

Dr. Sawsan Abdellatif

Feb. 2018

Electronics in Hand

Course Information

Title	Electronics Engineering		
Lecturer	Dr. Sawsan Abdellatif		
Lecturer webpages	http://www.bu.edu.eg/staff/sawsanelsayed3		
Email	sawsan.abdellatif@feng.bu.edu.eg		
Teaching assistant (TA)	Eng. Mohamed Ibrahim		
Assessment (100)	 Final Exam (70) Course work (30) Midterm (12) Section work (10) Quiz/assignments (8) 		

Course Schedule

	Topics	(# Lectures)
Part (1)	Introduction to Electric Circuits	1
	Ohms law, Energy and Power	1
	Series and Parallel Circuits	1
	Series-Parallel Circuits	1
	Circuit Theorems and Conversions	1
	Introduction to AC current and Voltage	1
	RC, RL, RLC circuits	1
	Midterm Exam	
Part (2)	Introduction to Electronics	1
	Diode and its applications	1
	Bipolar Junction Transistor and its applications	1
	Logic Gates	1
	Quiz and course closeout	1

References

"Principles of Electric Circuits-Conventional Current Version",

9th Edition, Floyd

- "Electronic Devices", 9th Edition, Floyd
- "Digital Fundamentals", 9th Edition, Floyd

Quantities and Units

Electrical Quantities

QUANTITY	SYMBOL	SI UNIT	SYMBOL
Capacitance	С	Farad	F
Charge	\mathcal{Q}	Coulomb	С
Conductance	G	Siemens	S
Energy (work)	W	Joule	J
Frequency	f	Hertz	Hz
Impedance	Ζ	Ohm	Ω
Inductance	L	Henry	Н
Power	Р	Watt	W
Reactance	X	Ohm	Ω
Resistance	R	Ohm	Ω
Voltage	V	Volt	V

Metric Prefixes

METRIC PREFIX	SYMBOL	POWER OF TEN	VALUE
femto	f	10^{-15}	one-quadrillionth
pico	р	10^{-12}	one-trillionth
nano	n	10^{-9}	one-billionth
micro	μ	10^{-6}	one-millionth
milli	m	10^{-3}	one-thousandth
kilo	k	10^{3}	one thousand
mega	М	10 ⁶	one million
giga	G	10 ⁹	one billion
tera	Т	10^{12}	one trillion

Voltage, Current, and Resistance

Atomic Structure

- An atom is the smallest particle of an element that retains its characteristics.
- An atom consists of central nucleus surrounded by orbiting electrons.
- The nucleus consists of positively charged particles called protons and uncharged particles called neutrons.
- The basic particles of negative charge are called electrons, which orbit the nucleus.

Atomic Structure (cont'd)

Atomic Number

- > The atomic number equals the number of protons in the nucleus.
- > For example, hydrogen has an atomic number of 1.

In the normal (or neutral) state, all atoms of a given element have the same number of electrons as protons; the positive charges cancel the negative charges, and the atom has a net charge of zero.

Shells, Orbits, and Energy Levels

- Electrons orbit the nucleus of an atom at certain distances from the nucleus called Orbits.
- Each orbit corresponds to a different energy level called shell
- > Maximum number of electrons in each shell = $2N^2$, N=1,2,3... is number of shell (i.e., Max. number of electrons 2, 8, 18, 32,)

Valance Electrons

- Electrons in the outermost shell of an atom
- Have highest energy levels
- Relatively loosely bound to the atom
- Contribute to chemical reactions
- Determine the material's electrical properties

The Copper Atom

- Atomic number of Cu=29
- The outermost shell (the valence shell) has only one valence electron.
- When the valence electron gains sufficient thermal energy, it can leave its atom and become a free electron.

Fig. The copper atom

- In a piece of copper at room temperature, a "sea" of free electrons is present.
- These electrons are not bound to a given atom but are free to move in the copper material.
- Free electrons make copper an excellent conductor and make electrical current possible.

Electrical Charge

- Electrical charge (Q) is an electrical property of matter that exists because of an excess or deficiency of electrons.
- Static electricity is the presence of a net positive or negative charge in a material.
- Charges of opposite polarity are attracted (attraction force) to each other, and charges of the same polarity are repelled (repulsion force).
- This force, called an electric field.

The Voltage

- The voltage is defined as the work done per unit charge to move a charge between two points.
- The voltage is also known as potential difference or electromotive force (emf).

$$V = \frac{W}{Q}$$

where V is voltage in volts (V), W is energy in joules (J), and Q is charge in coulombs (C).

Example If 50 J of energy are required to move 10 C of charge, what is the voltage?

$$V = \frac{W}{Q} = \frac{50 \,\mathrm{J}}{10 \,\mathrm{C}} = 5 \,\mathrm{V}$$

The Current

Voltage provides energy to electrons, allowing them to move through a circuit. This movement of electrons produces current.

Fig. Random motion of free electrons in a material. (when no voltage applied)

Fig. Electrons flow from –ve to +ve when a voltage is applied across a conductive material.

Electrical current (I) is the rate of flow of charge.

$$I = \frac{Q}{t}$$

I is current in amperes (A), Q is charge in coulombs (C), and t is time in seconds (s).

Example Ten coulombs of charge flow past a given point in a wire in 2 s. What is the current in amperes?

$$I = \frac{Q}{t} = \frac{10 \,\mathrm{C}}{2 \,\mathrm{s}} = 5 \,\mathrm{A}$$

The Voltage Source and Current Source

- An ideal voltage source can provide a constant voltage for any load.
- An ideal current source can provide a constant current for any load.

Batteries, Solar Cells, DC generator, power supply... are examples of DC voltage source

Resistance and Conductance

- > Resistance (R) is the opposition to current.
- > The unit of Resistance is ohms (Ω)
- > Conductance (G) is the reciprocal of resistance.
- The unit of conductance is the Siemens (S)

$$G = \frac{1}{R}$$

Fig. Symbol of resistance

Fig. Symbol of conductance

The Resistors

- A component that is designed to have a certain amount of resistance is called a resistor.
- > Resistors are use to *limit current* in a circuit, to *divide voltage*.

Resistors (Cont'd)

Variable Resistance sensors

Many sensors operate on the concept of a variable resistance, in which a

physical quantity alters the electrical resistance.

Examples:

- Thermistors: the resistance is a function of temperature
- Photoconductive cells: the resistance is a function of light
- Strain gauges: the resistance is function of force applied

(a) Thermistor

(b) Photoconductive cell

(c) Strain gauge

The Electric Circuit

Fig. (a) Simple electric circuit

0

Fig. Schematic for the circuit in (a)

Lamp

The Electric Circuit (cont'd)

Fig. There is current *I* because there is a complete current path.

Fig. There is no current because the path is broken.

The Electric Circuit (cont'd)

- SPST: Single Pole Single Through
- SPDT: Single Pole Double Through
- **DPST**: Double Pole Single Through
- **DPDT**: Double Pole Double Through
- NOPB: Normally Opened Push Button
- NCPB: Normally Closed Push Button

Fig. An example of an SPDT switch controlling two lamps.

(b) A schematic showing Lamp 1 on and Lamp 2 off

20

SW

Lamp 2

Lamp 1

opens, it can be reset and reused repeatedly.

Measuring Instruments

Thanks for attention